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Linear and nonlinear properties of convection in binary fluid layers heated from below are investi-
gated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions
that describes stationary and oscillatory convection in the form of straight parallel rolls is used to
determine the influence of the Dufour effect on the bifurcation behavior of convective flow intensity,
vertical heat current, and concentration mixing. The Dufour-induced changes in the bifurcation
topology and the existence regimes of stationary and traveling-wave convection are elucidated. To
check the validity of the Galerkin results we compare them with finite-difference numerical simula-
tions of the full hydrodynamical field equations. Furthermore, we report on the scaling behavior of

linear properties of the stationary instability.

PACS number(s): 47.20.—k, 47.10.+g, 51.30.+i, 03.40.Gc

I. INTRODUCTION

Convection in binary fluid mixtures heated from be-
low [1,2] is described by balance equations for mass, mo-
mentum, heat, and concentration. The diffusive currents
of heat and concentration that enter into the two latter
balances are driven by generalized thermodynamic forces
according to linear Onsager relations. They give rise to
the Soret effect — temperature gradients change con-
centration — and to the Dufour effect — concentration
gradients change temperature. In binary liquid mixtures
such as alcohol-water [3-10] or 3He-*He [11-13] the Du-
four effect is negligible. Most of the research activity in
the field of convection in binary fluid mixtures has been
focused on these binary liquid mixtures.

However, in binary gas mixtures the Dufour effect is so
large that it typically dominates the convective behavior
whenever the magnitude of the Soret coupling strength,
i.e., of the separation ratio % [2] is not negligibly small.
The importance of the Dufour effect in gas mixtures has
two causes: (i) the Lewis number L = D/k, i.e., the ratio
of concentration diffusion constant D and thermal diffu-
sivity being of order 1 in gas mixtures, is about 100 times
larger than in liguid mixtures; (ii) the Dufour number Q
measuring the contribution to the generalized thermody-
namic forces in the linear Onsager relations from gradi-
ents of the chemical potential that are caused by concen-
tration gradients can be estimated [14] to be Q ~ 20-40
in gas mixtures. Now, the Dufour effect changes the (di-
mensionless) equation of motion

(Bt+u-V)T=(1+QLy?) V2T —QLyV:C
(1.1)

of the temperature field T in two ways [14]. The “diago-
nal” term QL?V?2T reflects an enhancement of temper-
ature diffusion of relative size QL1)?%. The “off-diagonal”
contribution —Q Ly V2C describes the direct effect of gra-
dients in the concentration field C' on the temperature
field. Both contributions to (1.1) are large when the size
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of the Soret coupling % is not too small.

The influence of the Dufour effect on the onset be-
havior of convection in binary mixtures was determined
within a linear analysis [14] of the convective perturba-
tions of the quiescent conductive state. Here we first
extend the exact analytical linear results of Lee, Lucas,
and Tyler [15] for the stationary instability. Then, we
mainly investigate various nonlinear convective proper-
ties and how they are influenced by the Dufour effect —
in particular for gas parameters. We mostly use an eight-
mode Galerkin approximation to describe convection in
the form of straight parallel rolls subject to realistic hor-
izontal boundary conditions.

Similar models for binary liguid mixtures have to cope
with two difficulties: Boundary layer phenomena caused
by the smallness of the Lewis number, L = O(1072), in
liquids and the peculiar structure of the concentration
field in traveling-wave (TW) convection [16]. The re-
stricted spatial resolution of a few-mode Galerkin trun-
cation does not capture details of too fine a spatial field
structure. Binary gas mixtures, on the other hand, are
more favorable for such models: With L = O(1) concen-
tration boundary layer problems are less severe and the
existence range of TW solutions is significantly reduced
in parameter space since not only L but also the Prandtl
number o is of order 1. In any case, we checked our ana-
lytical Galerkin results against finite-difference numerical
test calculations of the full hydrodynamical field equa-
tions in order to assess the validity of the eight-mode
Galerkin model. A positive feature of the latter is of
course that it allows a convenient analysis of variations
with the control parameters Rayleigh number and sep-
aration ratio 1 and with the material parameters L, o,
Q.
The paper is organized as follows. In Sec. II the sys-
tem, the equations, the boundary conditions, and the or-
der parameters are described. Section III is preoccupied
with analytical results of the stationary stability analysis
of the quiescent heat conducting state. In Sec. IV we de-
rive the Galerkin model and investigate the influence of
the Dufour effect on linear properties of convective per-
turbations and on the nonlinear solutions of stationary
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and oscillatory convection. Section V contains compar-
isons of the model with linear and nonlinear results ob-
tained from linear stability analyses and finite-difference
numerical simulations of the full hydrodynamical field
equations. Section VI summarizes our results. In the
Appendix we present the corrected version of the linear
stability analysis [14] for more idealized free-slip, imper-
meable boundary conditions.

II. SYSTEM

We consider a fluid layer of height d between impervi-
ous, perfectly heat conducting horizontal plates which is
exposed to a homogeneous vertical gravitational acceler-
ation g in the z direction. We impose a vertical temper-
ature gradient so that the plates at z = :F% are kept at
temperatures To+ %71 , where Tp is the mean temperature

of the fluid. The associated Rayleigh number
3

- (2.1)

is given by the thermal diffusivity &, the kinematic vis-
cosity v, and the thermal expansion coefficient
_18p(T,5,0)

a= PR (2.2)

The solutal expansion coefficient is given by

_106p(T,p,0C)

= 2.3
- HBRC) (23)
where C denotes the concentration, p the pressure, and p
the fluid’s density. Throughout most of this paper we use
dimensionless units which scale lengths by d, times by 4}; ,

temperatures by EV;;_M and concentrations by ﬁ%s—.

A. Equations

The hydrodynamic field equations governing the sys-
tem’s dynamics are well known [14]. In the Oberbeck-
Boussinesq approximation they are

vV.a=0, (2.4a)

(Oe+0-V)a=-V (-50 +gz) + gla (T — To)

+8(C — Co)le, +v Vi, (2.4b)
k
(8t+ﬁ-V)C=DVZC+DT—TV2T, (2.4c)
1]
(B +0-V)T =x(1+k%La) V3T
+kkr LaTo V2 C (2.4d)

Here Cj, is the mean concentration of the mixture and
D is the concentration diffusion coefficient. The Lewis
number L = % gives the ratio of time scales for concen-
tration and heat diffusion. The Soret effect enters via the
thermodiffusivity kz while

_ 1 ou(T,p,C)
a= CpTo 80 (25)

quantifies the strength of the Dufour effect. In Eq. (2.5)
cp is the isobaric specific heat capacity and p the chemical
potential.

B. Dimensionless deviations from the conductive
state

The stationary solution of the Oberbeck-Boussinesq
equations (OBE) describing the state of pure heat con-
duction without convection is

Teond = To — é(“}:z ) (263)
kp AT
= —_ 2.6b
Ccond CO + T d z ] ( )
o kr\ AT
Peond = P(z = 0) — pgz [1 + (a ﬂTO) 2d 2] , (2.6c)
ﬁcond =0 (2.6d)

Here Cj is the mean concentration of the mixture. We
pass over to reduced fields for the deviations from the
conductive state

_ agd®
0= ™ (T — Tcond) (2.7a)
3
c = ﬁ—""—gd (C - Ccond) ’ (27b)
VK
d? .
p= ponz (p - pcond) ) (2.7C)
u= %ﬁ = (u,v,w), (2.7d)
that obey the equations
B =V V2w=0(02+82)(0+c)+NLT, (2.8a)
(Gt+u-V)8=Rw+ (1+LQy*) V30
-LQyVic, (2.8b)
(Be+u-V)e=Rypw+LV? (c—148) , (2.8¢c)
V.u=0, (2.8d)
NLT =e,-[VxVx((u-V)u)] . (2.8€)

To derive (2.8a) we have applied twice the curl operator
on Eq. (2.4b). We have introduced the Prandtl number

o = . The separation ratio

_kr B

’d): Toa

measures the Soret coupling. The Dufour number is

o ()

The Dufour effect enters into (2.8b) diagonally via
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the term LQ2V20 that reflects an enhancement of
heat diffusion — @ is positive — and off-diagonally
via —LQvy¥V?c which represents concentration-induced
changes in the temperature field. Thus for small Soret
coupling ¥ we can expect only small Dufour effects on
linear and nonlinear properties.

The parameters L, o, ¥, and @ depend on the mean
temperature, concentration, and pressure of the fluid.
Nevertheless, it is appropriate to characterize convective
properties by L, o, v, and Q instead of by the three ther-
mal equilibrium quantities. Note, furthermore, that Q is
known only poorly [17]. In order to select the range of
parameters to be investigated here we used the follow-
ing pieces of information: Hort et al. [14] have calculated
Dufour numbers of order 10 using an ideal gas model;
see also [17]. We limit ourselves mainly to the interval
(0,20). Since in gases concentration, heat, and momen-
tum diffuse on the same time scales we mostly investigate
mixtures with Lewis and Prandtl number 1. The separa-
tion ratio is considered in the interval (—1,0.25), which
can be expected to contain the experimentally accessible
range.

C. Boundary conditions

For a complete solution of the governing equations we
need a set of boundary conditions for the three relevant
fields w, 8, c. Except for the Appendix we impose realistic
no-slip, impermeable (NSI) boundary conditions. Since
the concentration flux at the no-slip boundaries is purely
diffusive,

1

=—-LV(C —yT) for z= :I:E ) (2.9)

we have to set

1
O,(c—v8) =0 for z= :ti (2.10)
in order to avoid a vertical flux of solvent through the
plates. In the conductive state the concentration flux
vanishes identically. It is useful to introduce the field

C(@,y,2;t) = c(x,y,2t) — Y 0(z,y,2;t) (2.11)

instead of ¢(z,y, z;t) with the simpler boundary condi-
tion

1
9,(=0 forz= :ti (2.12)
The no-slip boundary condition is described by
1
w=0=0,w forz= j:§ (2.13)

Finally, since the temperature is fixed at the plates the
deviation of the temperature from its conductive profile
has to be zero for perfect conductors,

0=0 forz= :i:% (2.14)

More idealized, free-slip, impermeable (FSI) boundary
conditions are described in the Appendix.

Using the ( field we get the following system of partial
differential equations governing the convection in binary
fluid mixtures:

(0 — o V) V2w =0(82+082) [(1+4)0+]

+NLT (2.15a)
(O:+u-V)=Rw+V?0—-LQypV(, (2.15b)
(B 4+u-V)( =LV — V20 (2.15¢)
V-u=0, (2.15d)
NLT =e,-[VXxV X ((u-V)u)], (2.15¢€)
with the boundary conditions

w=0= 8w,

0 =0 = 9, for 2+ = % (2.16)

In Eq.
number

(2.15¢) we have introduced an effective Lewis

£ =L(1+Qy?

Therefore the Dufour effect is switched off by canceling
the term LQ¥V2({ and replacing £ by L.

(2.17)

D. Order parameters

To describe convection we shall use different order pa-
rameters. (i) The maximal vertical flow velocity wmax di-
rectly measures the convective amplitude. (ii) The Nus-
selt number

N=1- %az(0>z,y |z=:t1/2 (218)
is the total vertical heat current through the layer re-
duced by the conductive part R. Here the brackets imply
a lateral average. To avoid the problem of determining
the bulk heat current in the presence of a Dufour ef-
fect we evaluate for convenience the vertical heat current
through the fluid layer right at z = :L-1 Not only heat
advection but also any Dufour—mduced contribution to
the heat transport from vertical concentration currents
vanishes at the NSI plates. The reduced vertical heat
current carried by convection alone, NV — 1, measures the
squared convective field amplitudes. (iii) Since wmax and
N — 1 do not characterize the concentration field we use
the “mixing parameter” [16]

C CO )m
M = 1Y Z
\/((Ccond - CO) ):t,y,

M is the variance of the concentration field reduced by its
value in the conductive state and thus characterizes the
magnitude of concentration variations around the mean
Co. In a perfectly mixed fluid, where all concentration
deviations from Cp vanish, M would be zero while in
the conductive state with the Soret-induced concentra-

(2.19)
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tion gradient M is defined to be 1. So 1 — M is an order
parameter for convective states that is zero in the con-
ductive state and approaches 1 for convection with per-
fect mixing. Finally, (iv) propagating convection rolls are
characterized by the oscillation frequency of the traveling
convection wave.

III. SCALING BEHAVIOR OF STATIONARY
STABILITY PROPERTIES

As we will see later on, the stationary stability thresh-
old of the quiescent heat conducting state is the smallest
one nearly all over the parameter space that is relevant
for binary gas mixtures. Therefore, we compile, review,
and extend in this section the exact analytical station-
ary stability analysis of Lee, Lucas, and Tyler [15] that
is based on the method of Chandrasekhar [18] (see also
the paper of Gutkowicz-Krusin, Collins, and Ross [19],
where, however, the diagonal contribution of the Dufour
effect to the heat balance was ignored). Our analysis
reveals an interesting scaling behavior of stationary sta-
bility properties that allows us to scale away the Dufour
effect. In addition to [15] we determine here the exact
eigenfunctions. Furthermore, we present an analytical
calculation of the zero wave number instability, an ex-
pansion of the critical Rayleigh number, and the critical
wave number around it, and further discussions, espe-
cially concerning the Dufour effect.

Using
- _LAAD I (e
R=rs , s=="712F ,T—(R/k) ,
(3.1)
and
go = tkvT—1, (3.2a)

a = —\% [\/m+l+§ + i\/m—l—g] :
(3.2b)

the stationary eigenfunctions on the marginal stability
curve have the form

w W e Wy coshkz
6 =16 6, 6, cos goz coskzx + c.c.
¢ ¢ G G coshqyz

(3.3)

Here the coordinate system is such that the horizon-
tal wave number of the perturbation fields is (kz, ky) =
(k,0). The linear equations of motion yield the relations

w=0
b R (L.
ég —Lsz("/))wo,

(3.4a)

(3.4b)

66\ _ R 1-3i/3 (L) .
((‘1) =TIk 2 p ) 1o (3-4¢)
between amplitudes so that four unknowns é, Wo, Wi,

and %} (§ and 1 are real) and four boundary conditions
remain. A solvability criterion yields the relation

ktanhg {Im [(\/§+'L) qltanhqz—l] + qotan%

2
=p{q0tang22 Im [(\/g—z) qltanh%] - |q1tanhq?1| }

(3.5)

between 7 and k. It determines the marginal stability
curve Rgap(k; p) depending on the parameter p given be-
low. Then one can determine also the marginal ampli-
tudes W, Wy, and Wi — with the normalization chosen
such that 2(1+p)f = —712k%p, they depend only on k and
p. The nonlinear combination

_ v o
PELa+9) T IO+ Qv +9)

of parameters L, @, and 9 that was called H by Lee,
Lucas, and Tyler [15] is a scaling variable. Note that p
vanishes in the pure-fluid limit, 9 = 0, of vanishing Soret
effect.

The marginal curve

(3.6)

Rgian(k;p) = 'l'3(lc;p)k4 (3.7)
obtained from solving (3.5) for 7 depends only via p on
the parameters L, Q, and 4. Therefore, the critical wave
number k. = k.(p) that solves ORgan(k;p)/0k = 0 is
only a function of p. On the other hand, the critical
Rayleigh number

1~ 1=
Rc = "S,‘Rstab(kc(p);p) = ERC(p) (3~8)
is a function of p and of
S=£(1+¢)+¢—£1+p (3.9)

L L p

The scaling relation (3.8) with £ = L(1 + Qv?),

L = Y
R.(L,Q,¥) = vTLa +1p)Rc (c(1 n 1/))) , (3.10)
implies a significant simplification for practical calcula-
tions of critical stationary properties: Only two func-
tions, k.(p) and R.(p), have to be determined as func-
tions of p to get k. and R, for all L, Q, and ¥ combina-
tions. In Table I, we list, for several p, the scaled critical
Rayleigh numbers, ﬁc(p), and the critical wave numbers
k(). Using 7. = (R./k2)}/3 (3.1), one can then deter-
mine the critical vertical exponents go and ¢; (3.2). The
vertical profiles of the critical eigenfunctions (3.3) can be
obtained from wg and w; in Table I. The amplitude f ap-
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TABLE 1. Critical stationary properties of binary fluid
mixtures as a function of scaling variable p (3.6).

p R.=mlk} ke o 104,
09 8353.80 6.67060 -2.26232  -0.641355+0.37086535
0.8 5189.08 5.67730 -1.77924  -0.599 229-+-0.347 3713
0.7 3831.61 5.01521 -1.53865  -0.478996+-0.384 074
0.6 3099.23 4.54281 -1.40431  -0.327500-0.458 674
-0.5 2645.13 4.18252 -1.32071  -0.162232-0.556 742
0.4 2336.96 3.89406 -1.26455 0.009 38873+0.669977i
0.3 2114.30 3.65476 -1.22469  0.183866--0.793459%
0.2 1945.88 3.45082 -1.19517  0.359434-+0.924 1443
0.1 1813.96 3.27336 -1.17258  0.535157+1.060087
0 1707.76 3.11633 -1.15480 0.710531+1.19997 2
0.1 1620.37 2.97546 -1.14047  0.885289+1.342947
0.2 1547.13 2.84765 -1.12865 1.05930+1.488 404
0.3 1484.82 2.73056 -1.11871 1.23250+1.635921
0.4 1431.13 2.62240 -1.11018 1.40489+1.785234
0.5 1384.35 2.52177 -1.10271 1.576 49+1.936 134

pearing in (3.3) and (3.4) is fixed by 2(1+p)¢ = —72k2p.

For p = 0, i.e., in the pure-fluid limit ¢ = 0, the scaling
factor S = 1 and the scaling function has the critical
value, RY, of the one-component fluid:

R.(p=0) = R% = 1707.762
and

k.(p=0) = k2 = 3.11633 . (3.11)

The marginal stability curve shows the scaling behavior

Rutas (85 L, Q. %) = g R (37) , (3.12)
where Rgap, (3.7) is defined by the solution of (3.5). Thus,
the Dufour effect can be scaled away in stationary stabil-
ity properties. Higher stability thresholds for odd eigen-
functions can be obtained by replacing cos by sin and
cosh by sinh in the terms of (3.3) containing the vertical
spatial dependence. This results in an equation of the
same form as (3.5), however, with tanh replaced by coth
and tan by —cot. The case of heating from above with
7 < 1 and imaginary go can also be treated. Note that
go tan(go/2) as well as go cot(go/2) are real for imaginary
do-

In Fig. 1 we show (a) the critical reduced wave number
k.(p)/k? and (b) the reduced scaling function R.(p)/R?,
both versus p. For p —» —1, k. goes to about 7.48 and
the scaling factor S in (3.8) goes to zero, which is the
reason for the divergence of R.. At po = 131/34 =~ 3.85
the critical wave number vanishes. We have evaluated pq
and the stability behavior in the neighborhood of ps by
a Taylor expansion of Eq. (3.5) up to order k£2°/3 using
the ansatz 7 = k~%/3(a + bk? + ck?) that follows from
expanding the scaled marginal Rayleigh number Estab as

Raan(k) = 73k* = [a + bk? + ck* + O(k®)]?
= a3 + 3a%bk? + 3a(b? + ac)k* + O(k®). (3.13)

2 (@) -

k.(P)k,

R(pIR,

0 1

0 1 2 3 4
FIG. 1. Dependence of stationary critical properties on the
scaling variable p (3.6). (a) Reduced critical wave number

(solid line). The dashed line represents the expansion around
po = 131/34. (b) Reduced scaled stability threshold.

The value po for which the minimum of ﬁstab is located
at k. = 0 is determined by the requirement 3a2b = 0. In

that case Estab(k) increases proportionally to k%. Per-
forming the expansion we get

P P =

Rstabz = mRstab
2040 131
=720+ — | p— =— k2
t T (” 34)
1700115 [ , 2033552
131030 9p2 340023 ¥
3779327
ST DNkt 4 O(K®) . 3.14
* 340023 ) +O(k7) (3.14)

For values of p slightly below po = 131/34 = 3.85294...,
we can calculate

2 3471468 p (3 —p)

ki = .
€ 340023 p2 + 2033552 p + 3779327

(3.15)

In Fig. 1 we show this k. (3.15) by a dashed line in com-
parison to the exact result. Gutkowicz-Krusin et al. [19]
and Knobloch and Moore [20] have given the expansion
of Rgiab?/L up to order k° thus obtaining the above
stated value of 720. In (3.14) we present in addition
the quadratic and quartic order and the p dependence of
k. whose determination uses the quartic order term in
(3.14).

In the literature dealing with binary liguid mixtures
there are several expressions for the separation ratio 1o
for which k. = 0. For zero Dufour effect, our calculation
leads to

Po(@ = 0) =~

I (3.16)
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with f = 1/pe. Linz and Liicke [21] and Lhost et al. [22]
have obtained from Galerkin approximations using free-
slip, impermeable (FSI) and NSI boundary conditions
values of f =~ 1.62 and f =~ 0.37, respectively. Knobloch
and Moore [20] have extracted f = 0.26 out of their nu-
merical stability analysis which has to be compared with
our exact result of f = 34/131 = 0.25954... .

Now we discuss the influence of the Dufour effect on
the critical wave number’s 1 dependence. Hort et al.
[14] found, within their FSI Galerkin approximation, that
with increasing @ the curve k.(¢) formed a saddle at
¥ = —1/3 when Q reached the value 27 for L = 1.
This behavior holds also for the exact result with NSI
boundary conditions. To show this, consider dk./dy =
dp/dy x dk./dp. Since k.(p) (Fig. 1) is monotonous the
extrema of k.() are given by the zeros of dp/dy, i.e.,
the roots of the third-order polynomial

1
3 2

g - 55 =0

One root is always greater than zero and not of interest.
Two additional real roots first occur at Q = 27, ¢ =
—1/3 causing a saddle in k.(1) there. The appearance of
this saddle is independent of L and o and holds for the
exact NSI stability analysis as well as for the model [14].
Finally, we would like to mention that an application
of the method presented here to the oscillatory stability
analysis requires more numerical effort [20,23] because
the vertical wave numbers g are not simple third-order
roots but solutions of a fourth-order polynomial depend-
ing also on frequency w. Therefore, exact analytical re-
sults for the oscillatory threshold, the critical wave num-
ber, and the Hopf frequency do not seem to be feasible.

(3.17)

IV. GALERKIN APPROXIMATION

In this section we present our Galerkin model for re-
alistic boundary conditions. Starting from this model
we carry out a linear stability analysis of the conductive
state before calculating nonlinear states, stationary as
well as oscillatory ones.

A. NSI mode truncation and model

To describe convection in the form of straight rolls we
truncate the spatial mode expansion appropriate to NSI
conditions by

w(x, z;t) = [wi1(t) e7*® +c.c.] Ci(2) (4.1a)
0(z, z;t) = [Oll(t) et 4 c.c.] V2cosnz
+602(t)V2sin 27z , (4.1b)
((z, 25t) = [Cm(t) etk 4 c.c.] + Co1(t)V2cos iz ,
(4.1¢)
where C1(z) = coshdiz  _  cosMz (dengtes the first

cosh A, /2 cosA1/2
even Chandrasekhar function with A\; = 4.73004. Since

the modes 6p; and (o2 are linearly damped within an
enlarged model’s frame, as we have calculated before
restricting the mode truncation to the above form, we
do not display them explicitly. Furthermore, these two
modes would violate a mirror-glide symmetry of the @
and ( field that was found [24] for stationary and trav-
eling roll patterns. The no-slip boundary condition is
guaranteed by using the Chandrasekhar function. Im-
permeability of the plates is ensured by confining the ¢
ansatz to modes with vanishing z derivatives at z = :{:% .

Projecting the OBE (2.15) onto the eight modes con-
tained in our truncation (4.1), we obtain the following
generalized Lorenz model:

X = -5fX + §3[1+ %)Y + U] , (4.2a)

™Y = —§*Y + (r—2)X + (kU (4.2b)

U = -6, Lk*U + yY + VX, (4.2¢)

T2 = —b [z - XY +47I—”111ZV} , (4.2d)

TV = —g[mx-U + myZ + LV], (4.2€)
with

7= %LQd),E = L(1 + Qy?). (4.3)

We used for the critical modes the following vector nota-
tion:

X = (X17X2) = Mral(Re wi,Im wu) )
Y = (K,Yz) = 2a3—%(Re 011,Im 011) , (4.4)
U = (U,,02) = as\/—Ro (Re ¢10,Im (10) -
These modes drive via Egs. (4.2) nonlinear ones:
T
Z = 2V2a3—0 d V=- 4.5
faaRg o2 an 2\/'R°COI (4.5)
The constants are
@ = 2mA? (—r——pﬁ) = 0.4058,
1
az = T“‘ATM = 0.6974,
as = o1 = 05818,
ay = 2A1tanh—1——)\2tanh2 = —123026, (4 g
a; = azm\l tanh-—l = 0.7585 ,
2
B = —=—,,g',°,i,,, = 0.4930,
m = TS = 22916,
py = 3e7 = 1.4770.

The quantities k2 = 3.098, (¢2)2 = (kK2)? + =%, R? =
1728.38, 7 = @2 )2 = 0.05138, and b = (a 0)22 = 2.0282 are

critical properties of the model for ¢ = 0 [25]. & = 1.9430
denotes a rescaled Prandtl number caused by the no-slip
mode truncation [25]. In addition we use the reduced
Rayleigh number r and the wave numbers k and § defined
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by
_ R .k 2 ¢ K 4n®
g FTmo TR T mrre (7

as well as the quantities

A+ k4 — 2k2a,
k2 — a4

(k)% — aq
AL+ (k)% — 2(k2)%aq

f=
and

. k2 (kQ)? — a4
g= ¥ s (KO (4.7b)

sothat k = §=f = § = 1 for k = k%. This notation
is also used by Lhost et al. [22], who have examined the
onset of convection in binary mixtures neglecting the Du-
four effect and by Niederldnder et al. [25], who have de-
rived the analagous NSI model for one-component fluids.
Note, however, that in [25] the modes are reduced by k-
dependent quantities — see, e.g., Egs. (2.8)—(2.10) in Ref.
[25]. On the other hand, here we reduce the modes by
critical properties of the ¢ = 0 reference system. Thus,
here all k dependence of the system is displayed ezplicitly
in the model equations (4.2).

The Dufour effect influences the mode balances in two
distinct ways: It causes a driving of the temperature
modes Y and Z by the (-field modes U and V, respec-
tively. The associated coupling strength 3 = ;";LQ«p
vanishes when Q = 0. Furthermore, in the (-field equa-
tions for U and V, the Lewis number L is replaced by an
effective one, £ = L(1 + Qv2).

To facilitate the quantitative comparison with exper-
iments or numerical solutions of the full field equations
we evaluate among others the order parameters defined
in Sec. IID. Thus the maximal vertical flow velocity is
given within the model by

g2

w =
max \/5(11

Ci(0) | X | =12.20 | X | (4.8)

in terms of the amplitude of mode X. The reduced ver-
tical convective heat current, evaluated at the plates, is

2m/2 Z

o2 = —
R 2 asr

N-1= (4.9)

Thus, the Nusselt number is related to the mode Z. As an
aside we mention here a deficiency of the no-slip Galerkin
approximation that was discussed in more detail in [25]:
Since the velocity field is expanded in Chandrasekhar
functions, i.e., a nontrigonometric basis, the stationary
vertical heat current is not z independent.

Into the mixing parameter M (2.19) the temperature
modes as well as the (-field modes enter

2
M? =14 24{ 2 [U2+%¢2Y2+2¢Y.U]

292 | a3r2(q?)*
4|, w?r_, 29
+ {V + 64a§Z 3a32v

6 2

B. Linear stability analysis

We start the discussion of our model with the investi-
gation of the linear stability of the conductive fixed point
where all mode amplitudes vanish. The nonlinear modes
Z and V do not couple linearly into the equations for X,
Y, and U and are damped away. Therefore we have to
seek the stability thresholds of the matrix system:

X —5f F9(1+9) T X

0, | Y | = r —§? Brk? Y

U 0 Py —pPLLk? U
(4.11)

We calculate the stationary stability curve rstat(l::) to be
8 2

sl — TQJLT

fd (1 + Qv*)

P o
1 1 21
J”/’( +L>

(4.12)

The critical stationary wave number follows from

0= (kGae)® + fa (kSae)* + f2 (BGat)® + fo  (4.13)
with the coefficients
faz 2 ;’73 gl_/; 7o — (4.14a)
149 (1+ f)
= % 17; (;1(—1 132)21) , (4.14b)
c
fo = 71272 N % ';1111157(21—:;':1)), (4.14¢)
L
and the numbers
7,‘_2 4
" i 1.029 ; v, = (—k21? = 5.437 ;
3 2(;2“ s = —2.564 (4.14d)

The critical stationary wave number as a root of (4.13)
is a function of the scaling parameter p = Z_(T%T) only —
different 1, L,Q combinations for which p is the same
yield the same kS, (p). Such a scaling behavior was
found analytically in the exact stationary stability anal-
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ysis of the full field equations by [15] and in Sec. IIL

However, the marginal curve rsm(ic) (4.12) of the model

does not show the full scaling behavior seen in Sec. III.
The oscillatory stability curve is given by

~

7@ 1+ L

osci;: = ~ =<
ree) = T r 13 —ew

x (1 +§) (1 + é) _v (4.15)
ag g
and the Hopf frequency at rosc(l}),
wi,g _ e, (1+E)(i+2)
(1 +'l/))(1 +0') - a]_’(,b
pyp WHPE=A T g4

(1+9)(1+7) — a9

Here we have introduced wave number dependent fluid
parameters

= f_ ~ k2 = k2 ~
o-=”_20 y ;C:ﬁl,,—zc 5 and ’ll)=ﬂ1,,—2’lﬁ . (417)
q q q
Since the square of the critical oscillatory wave number
is given by a root of a polynomial of at least degree 10
we evaluated kS, numerically by minimizing 7 (k).
Figure 2 shows the main results of our stability anal-
ysis: The Dufour effect destabilizes (stabilizes) the con-
ductive state against the growth of stationary (oscilla-
tory) convection and it shifts the critical curves 75, (1)
and 75, (¢) towards negative . The critical stationary

wave (:flmber kSat(v) forms a saddle for Q@ = 27 and

0804 0 08 04 0 08 04 0
v 4 v v

-08 . -04 0

FIG. 2. Stability properties of a gas mixture (L = 1,0 = 1)
vs separation ratio 9 for different Dufour numbers Q. The
reduced stationary (solid line) and oscillatory (dashed line)
stability thresholds 7g;,; and r5,., the corresponding reduced
wave numbers I:::t“ and IAc,'j,c, and the critical Hopf frequency
wy result from the NSI model for which R? = 1728.38 and
k2 = 3.098.

P = ——%. The wave number k¢, (1) of critical oscilla-
tory patterns decreases and the difference, kS, — k&,
increases with increasing Dufour effect. The Hopf fre-
quency decreases with growing Q. An important fact is
that the v range of oscillatory instability sharply shrinks
with increasing Dufour number. It remains an experi-
mental challenge to prepare mixtures that have the right
Q-1 parameter combinations to see this behavior. All
the above described properties are the same as those ob-
tained from the full field equations with a numerically
performed shooting analysis (compare, e.g., Fig. 7 of Ref.
[14] with our Fig. 2). We refer to Ref. [14] for a more de-
tailed discussion of linear properties which are not the
main topic of this paper.

Finally, we mention that the analytic oscillatory sta-
bility analysis presented in [14] for idealized FSI bound-
ary conditions contains a mistake. In the Appendix we
present the correct formulas and a figure showing these
results. We find that our corrected FSI results are closer
to the exact NSI curves than the FSI results of Ref. [14].

C. Nonlinear convective states

Here we elucidate the influence of the Dufour effect on
properties such as strength of convection, bifurcation be-
havior, heat flux, and concentration mixing in nonlinear
states of stationary and oscillatory convection.

1. Stationary convection

The stationary solutions of our model representing
steady overturning convection (SOC) in the form of
straight rolls are given by

2_ @ ay? _
X?= -2 (2) 8, (4.18a)
~ 2 ~
Y=_F [&ckz (c - ”—lw) + xz] X, (4.18b)
M1 4pq
Z=-F [éczfcz + 4"—14211)J+ Xz] X2, (4.18c¢)
H1 H1

U="Tpy [——l—cqz + M yd 4 XZ] X, (418d)
M1 m 4p

V=F¢ [%Lkz + 52] X2, (4.18e)
1

where we have introduced the following abbreviations:

- 2 ~ ~
F-l— 2{ (Z%W _ £ ) [BLk2L(1 + ) + a143]
1

f ™
-X? [1 + 9 <1 - %)] }, (4.18f)
H1
a=q¢+ &LZ]:;Z + "71_’311/,{/;(];2 + i)
M1 M1 46,
2 [1 +¢(1 - T")] (4.18¢)
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B r272 .2 71% ‘/’J
= — L%k 1— ——
p M1 g 4p, L

() ()

Formulas (4.18) for the SOC solution are structurally
similar to those of the analogous models [26,21] with-
out the Dufour effect and derived for idealized FSP [26]
or FSI [21] boundary conditions. Also here, as in [26,21],
the SOC solution does not depend on the Prandtl num-
ber.

A positive X? bifurcates according to (4.18a) out of
the conductive solution, X = 0, at the stationary thresh-
old 7stat where 3 (4.18h) goes to zero. The influence of
the Dufour effect on the convective intensity can be seen
in Fig. 3. There we display X2, the square of the verti-
cal velocity mode, versus r for ¥ = —0.25, L = 1, and
k = k? for several values of the Dufour number Q. For
a fixed Rayleigh number » 2 2 the strength of convec-
tion is reduced with increasing Q. However, near onset
it is enhanced: The Dufour-induced destabilization of
the conductive state shifts the convective onset to lower
values of 7. The reduction of X? at large r is nearly pro-
portional to Q. This can be checked by an expansion for
r — 00, which already holds for r 2 3, where all curves
X?2(r) tend asymptotically to straight lines.

The most conspicuous change in the SOC bifurcation
behavior with increasing Dufour effect is the gradual
change from a strongly backwards bifurcation (Q = 0
in Fig. 3) via a tricritical one to a forwards bifurcation.
This behavior is documented in a more global manner in
Fig. 4: The bifurcation of SOC’s with k = 1 is forwards
(backwards) in the shaded (white) L-1 region to the right
(left) of the thick full curve of tricritical bifurcations. The
shaded region strongly grows with increasing Q on cost

(4.18h)

=2,\y=0)

2 2
W [ Wi, (1

2

FIG. 3. Square of the vertical velocity mode X of station-
ary convection vs reduced Rayleigh number r for different
values of the Dufour number Q. Parameters are ¥ = —0.25,
L = 1, k = k2, and arbitrary 0. The long dashed line
shows X? = r — 1 in a pure fluid (¢ = 0). For com-
parison with experiments one should identify X2? with the
flow intensity reduced by the pure fluid value at r = 2, i.e.,

L

FIG. 4. Onset behavior of SOC with k& = k2 in the L-¢
plane for different Dufour numbers. The bifurcation of flow
intensity vs Rayleigh number is forward (backward) to the
right (left) of the full thick curve of tricritical bifurcations.
The threshold rstat has moved to 7stat = 0o at the thin line.
Below this curve the convective solution is disconnected from
the conduction fixed point. In this parameter regime con-
vection branches out of the conductive state for heating from
above, r < 0.

of the white one. At the thin solid line of Fig. 4, the
bifurcation threshold has moved to rgas = 00. So, to the
left of it, the lower branch of X2(r) is disconnected from
the X = O solution. In this regime, convection branches
out of the conductive state at a finite negative rgas, i.e.,
for heating from above.

Note that the tricritical bifurcation line at, e.g., @ = 15
in Fig. 4, is nonmonotonous — the Dufour-induced ap-
pearence of strongly nonlinear L-1 variations in convec-
tive and in stability [14] properties is not surprising in
view of the fact that the Dufour effect enters via LQy and
LQ? into the field equations. Thus, when decreasing
here 9 from zero, e.g., along the dotted line in Fig. 4, one
can observe the succession f >t —>b—>t—> f—>t—>b
of forwards (f), tricritical (¢), and backwards (b) bifur-
cations.

In Fig. 3 we have seen that the flow intensity X2 de-
creases with increasing Dufour effect @ or with decreas-
ing heating rate, r. In Fig. 5 we show that the structural
changes resulting from either increasing @ or decreasing
r are in fact the same: The simultaneous agreement in
the structure of all fields — temperature, velocity, and
concentration — is almost quantitative for the two com-
binations @ = 10, r = 2.5 and Q = 0, r = 2 shown in
Fig. 5 and could be made perfect by judiciously choosing
7-Q combinations. Compare also the lateral profiles of
these fields at midheight of the fluid layer as shown in
the second row of Fig. 5. Thus, increasing both Q and r
appropriately does not change the SOC state.

In the second row of Fig. 6 we show, for various Soret
coupling strengths 1, the influence of the Dufour effect



52 INFLUENCE OF THE DUFOUR EFFECT ON CONVECTION IN ... 651
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FIG. 5. Structural properties of SOC states in the z-z plane
perpendicular to the roll axes. Black implies low field val-
ues and white implies high ones. The second row shows the
lateral profiles of w (solid line), 208 (dashed line), and 100c
(dot-dashed line) at midheight of the fluid layer. Increasing Q
or decreasing r leads to structurally similar fields — increas-
ing both appropriately does not cause changes. Parameters
are ) = —0.25, L =1, and k = 1.
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FIG. 6. Nusselt number N and mixing parameter M of
stationary convection vs Rayleigh number r resulting from
our model and from numerical simulations of the full field
equations with L = ¢ = 1, k = k2. Within a column the
Soret coupling % has the value indicated in the figure. Curves
for different Dufour numbers Q are identified in the legend.
Unstable branches (dotted lines) of subcritically bifurcating
SOC'’s can be seen only in our model, namely for ¢ = —0.25
and ¥ = —0.5.

on the r variation of the model’s Nusselt number [(2.18)
and (4.9)] in SOC states. The influence of the Dufour ef-
fect on the Nusselt number is similar to that on the flow
intensity — cf. Fig. 3. First of all, the onset of convection
is shifted with increasing @Q to a smaller Rayleigh num-
ber. Simultaneously, at larger r, say above r = 2, the
vertical heat current decrases with increasing Q. Both
effects combined flatten the bifurcation curve of N — 1
versus r and/or change the backwards bifurcation topol-
ogy at sufficiently negative v into a forwards one. For
example, in the extreme case of ¢y = —0.5, where for
Q = 0 the lower bifurcation branch (cf. dots in Fig. 6)
is disconnected from the conductive state, already a Du-
four effect of size @ = 5 brings down the onset rg.: to
about 3.47. Increasing @ further the bifurcation becomes
forwards even for this strong Soret coupling ¢ = —0.5.

In the third row of Fig. 6, the graphs of M [(2.19) and
(4.10)] versus r show how the Dufour effect influences
the mean square variation of the concentration field in
the SOC states of the model. Remember that M is de-
fined to be 1 in the conductive state. Furthermore, the
better the convective mixing of the fluid the smaller are
concentration variations and with it M. So we see in
Fig. 6 that the Dufour-induced reduction of the convec-
tive flow intensity and of the Nusselt number at larger =
is accompanied by a reduction of the convective mixing:
For larger r, the parameter M increases with increasing
Q. Roughly and qualitatively speaking the bifurcation
behavior of the flow intensity, w2, and of the convec-
tive heat current, N — 1, are similar to 1 — M which
measures the degree of convective mixing.

2. Traveling-wave convection

Our Galerkin model has nonlinear convective solutions
in the form of harmonic waves of constant amplitude
traveling with constant phase speed v, = w/k either to
the left or to the right. The complex Galerkin modes
(4.4) for this traveling-wave (TW) solution have the form

X(t) = | X | e, (4.19a)
Y(t) = | Y | eilwtte) (4.19b)
U(t) = | U | wt+h), (4.19¢)

with constant moduli | X |,| Y |, and | U | and phase dif-
ferences o, 3. The real modes Z and V' (4.5) are time in-
dependent as well. The hydrodynamic fields follow from
(4.1).

From the mode equations (4.2) one finds that both
| X |2 and the squared frequency w?(k) of the TW solu-
tion vary linearly with the distance from the oscillatory
threshold at rosc(k):

(4.20a)
(4.20b)

| X |2 = STW(T - 7"osc)’

w2 = w%{ + fTW("' - rosc)

The threshold values 7osc(k) and wg (k) as well as the
slopes sTw and frw of the bifurcating TW solution
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branch depend on L, @, ¥, and o but the r dependence
is always linear, i.e., of the same form found for @ = 0
and liquid mixture parameters with FSI boundary condi-
tions [21,27]. The subcritically (supercritically) bifurcat-
ing TW’s with stw < 0 (stw > 0) are unstable (stable,
at least close to onset). At

. wh
T = Tosc — fTW (421)

the TW solution ends by merging with zero frequency
into the SOC solution (4.18).

Figure 7 shows existence boundaries of the TW so-
lutions (stable or unstable). For o = 1 the model has
TW solutions with k = k2 in the Q-1 region below the
thick lines for various Lewis numbers as indicated by the
line type. These existence boundaries are determined by
the merging of the oscillatory and stationary bifurcation
threshold, 7oec(k2) = rstat (k2), for fixed wave number k2,
i.e., by the codimension-2 (CT) condition with vanish-
ing Hopf frequency wg(k?) = 0. Note that the existence
range of TW’s with the critical oscillatory wave num-
ber kS, is somewhat wider than the one for TW’s with
k2 as can be inferred also from Fig. 2. The boundary
curves of Fig. 7 show that the 3 range in which TW'’s
can be found is shifted to more negative values when (i)
the Lewis number increases, i.e., when concentration dif-
fusion becomes more efficient, or (ii) when the Dufour
coupling increases. For L < 0.6 the 1 range of TW ex-
istence splits into two pieces for sufficiently large Q. A
similar feature was found in the linear analysis of the re-
gions with nonvanishing Hopf frequency (Fig. 6 of [14]).

The TW’s bifurcate supercritically (subcritically) out
of the conductive state for the parameters in the shaded
(white) regions of Fig. 7 below the respective thick
curves. For parameters on the thin, vertically oriented
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FIG. 7. Existence boundaries of TW solutions (stable or
unstable) of the model for o = 1, k = k2. TW'’s exist below
the thick labeled curves. For k = kS,. the existence range
is larger as can be inferred from Fig. 2. The shaded (white)
regions show the range of supercritically (subcritically) bifur-
cating TW's.

lines, the TW bifurcation is tricritical. Obviously, for-
wards bifurcating TW’s disappear rather soon with grow-
ing Dufour number while backwards bifurcating ones can
be seen for larger Q, provided the Soret coupling is suf-
ficiently negative. The width of the shaded existence
range in Fig. 7 of supercritical TW'’s, i.e., the distance
| Yor — ¥: | between CT and tricritical separation ra-
tio measured, e.g., for @ = 0 and o = 1, is largest at
L = 0.736. This distance decreases to zero for L — 0.

Our model also shows for positive ¥ TW solutions like
the FSI model for @ = 0 [21,27]. These TW’s at ¢ > 0
branch in a secondary bifurcation at r* out of the SOC
state whereas for ¢y < 0 TW'’s bifurcate at the oscilla-
tory threshold r.s. out of the conductive state and end
at 7* in the SOC state. We should like to mention that
numerical simulations of liguid mixtures gave no indica-
tion of the existence of TW’s at positive ¥ (cf. [16] for
a short discussion), which suggests that they result from
the mode truncation of the model. For gas mixtures nu-
merical results are not available. Furthermore, the model
TW states at positive ¢ appear in gases at large r (e.g.,
erOforQ:10,1/)=L=a'=l::=1)wherewith
the mode amplitudes being large the model’s truncation
approximation is presumably not justified. And, finally,
these states occur for relatively large positive separation
ratios that might be inaccessible experimentally.

V. COMPARISON WITH RESULTS FROM THE
FULL FIELD EQUATIONS

In this section we compare linear as well as nonlin-
ear properties of our eight-mode Galerkin approximation
with results obtained from the full hydrodynamic field
equations. In Sec. V A critical linear model properties
are compared with an analytical exact analysis of the sta-
tionary instability of Sec. III and with results obtained
numerically with a shooting method for the oscillatory
instability [14]. In Sec. VB we compare nonlinear con-
vective properties of the model with results from solving
the field equations numerically with a finite-differences
method.

A. Linear properties

First we compare the numerical exact critical wave
numbers, stability thresholds, and Hopf frequencies of
Fig. 7 of [14] with Fig. 2 showing in an analogous way
the results of our model. Our approximation of the crit-
ical wave number of the stationary patterns is nearly
perfect with errors less than 1% in the whole @ and ¥
range investigated here. The stationary stability thresh-
old r¢,,, itself is approximated with the same quality over
the whole 7 interval for Q < 10 and for all investigated
values of Q for ¥ 2 —0.3. The buildup of a local mini-
mum and maximum in r&,,(4) occurring for @ 2 10 in
our model starts for smaller values of @ in the numeri-
cal threshold [14]. This reflects small errors for moderate
Q@ and strong ¥ S —0.6. Our model reproduces the
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value, where 75,,,(¢) diverges with an accuracy of about
5% since the model’s stability curve does not show the
proper scaling behavior (see Sec. III) resulting from the
full field equations.

The errors of our model for the oscillatory stability
analysis are largely caused by a shifted {» dependence.
This shift from the model values to those of the shooting
analysis increases with a stronger Dufour effect from 0
for @ = 0 to —0.3 for Q@ = 20 in the direction of the
negative @ axis. After this transformation the model
describes 75, as well as the Hopf frequency with small
errors. Even the slight kink in the curve wg(¢) for Q =
5 in the neighborhood of 9 ~ —0.5 is reproduced. In
addition, our model provides good approximations for
kS, if we restrict ourselves to values of @ less than 5.
For a stronger Dufour effect it cannot produce the strong
1% dependence seen in the shooting analysis, but it shows
the main two qualitative effects of increasing @ on the
critical oscillatory wave numbers: ‘a decreasing value of
kS, and a building up of a minimum in the curve k¢, ().

To conclude, our NSI-Galerkin approximation is very
good as far as the stationary stability analysis is con-
cerned. The errors in its oscillatory part are small and
increase with Q. But they are less relevant, say, from an
experimental point of view because they occur mostly in
a parameter range where the first instability is stationary.

To get further insight into the reasons of the errors of
our model we compare in Fig. 8 the vertical profiles of
the critical modes for the stationary and the oscillatory
instability, respectively, for Q@ = 5 as a representative
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FIG. 8. Vertical profiles of the linear critical Fourier modes.
Full lines refer to the exact result obtained analytically (see
Sec. III) or numerically with a shooting method. Dashed
lines represent the model. Because of the mirror symmetry
of the critical modes at the mid plane, 2 = 0, only one-half
of the layer is shown. Left column contains the moduli at the
stationary instability for 9» = —0.3. Right column shows the
moduli and phases at the oscillatory instability for ¢y = —0.4.
The vertical average of pw(z) has been assigned to the phase
angle zero. The normalization is always such that | 8 |= R
at z = 0. Parameters are c =1 =L and Q = 5.

example. Exact results are shown by full lines and the
model’s results by dashed lines. Because of the mirror
symmetry of the critical modes at the midplane z = 0,
the modulus and phase profiles are displayed only in one-
half of the layer.

Consider first the profiles of the stationary critical
modes (left row in Fig. 8). Those of the 6 field contain
with increasing Q and || a small admixture of higher
vertical modes beyond the cos 7z of the model. The crit-
ical velocity field is fitted very well by the first Chan-
drasekhar function except for a small error in its central
maximum which increases with Q. The most important
deviation occurs for the critical ¢ field: The approxima-
tion ( = const ignores the z variation of the exact profile.
But the constant lies for relevant fluid parameters within
the range of variation of the exact result.

In the right-hand row of Fig. 8 we compare moduli and
phases of the critical oscillatory modes of the model with
the corresponding exact results. Also here, like for the
stationary instability, the vertical profiles of the critical
eigenfunctions of velocity and temperature resulting from
the model agree quite well with the exact ones in modu-
lus and phase. However, the model phases are constant
and typically larger than the 2-dependent exact phases.
Again the largest deviations, in modulus and phase, oc-
cur for the critical ¢ field.

B. Nonlinear properties

To test the quality of the model’s predictions for
the nonlinear convective states we have performed some
selected numerical simulations of the full hydrody-
namic field equations (2.4) with a marker-and-cell finite-
differences method using a modification of the SOLA com-
puter code. This code has been employed successfully for
binary liquid mixtures [16].

1. Traveling-wave convection

For gas mixtures L =1 =0 and 0 < Q < 20 we found
in the full field simulations no stable, large-amplitude TW
solutions that have bifurcated subcritically in agreement
with the model. Note that the existence range of non-
linear stable TW’s on the upper TW solution branch in
binary liquid mixtures at @ = 0 rapidly shrinks to zero
as L approaches 1 from below (Fig. 14 in [16]). For gas
mixtures with L = 1 = o the subcritically bifurcated TW
solution branch ends on the SOC branch without having
formed a saddle. Thus, this TW branch remains unsta-
ble all the way from the bifurcation threshold r.s. to the
end point 7* on the SOC solution branch. This result is
supported by a recent test calculation with a 267-mode
Galerkin expansion. In it the number of - and (-field
modes was large enough to reproduce any structural de-
tails of the finite-difference solution of the field equations.

The model shows in a small Q-9 region — cf. the
shaded areas of Fig. 7 — forwards bifurcating TW’s (e.g.,
for @ =0, L =1 = o, and k = k2 between the tricrit-
ical value ¥; = —0.3812 and the codimension-2 value
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ot = —0.2174). However, the r interval (rosc,7*) where
these supercritical TW solutions appear is very small —
less than 1% of the current heating rate r for @ = 0 — so
that the initial slope of the bifurcating TW branch is al-
ways large. On the other hand, in the 267-mode Galerkin
calculations, done for Q = 0, 0 = 1, we found only back-
wards bifurcating TW solutions for L = 1 while runs for
L= % did show a small ¢ range near the CT point with
supercritical TW’s. So the domain boundaries between
supercritical and subcritical TW states in the L-o-1-Q
parameter space are not reproduced quantitatively by our
eight-mode model.

2. Stationary convection

In Fig. 6 we compare the bifurcation properties of our
model SOC solutions (4.18) with finite-difference simu-
lations of the full field equations. We show the Nus-
selt number NV and the mixing parameter M versus r for
four Dufour numbers (Q = 0,5,10,20) at four different
separation ratios — note the different abscissa and ordi-
nates scales. Figure 6 shows that our model reproduces
the SOC bifurcation diagrams of N and M including the
Dufour-induced trend towards a supercritical bifurcation
topology with less convection and less mixing not only
qualitatively but also semiquantitatively.

For a more detailed comparison of the SOC field struc-
ture of the model with that of the numerically simulated
solution we show in Fig. 9 vertical profiles of the first lat-
eral Fourier modes n = 0,1,2. The velocity field is well
approximated by our first lateral Fourier mode. Higher
modes not contained in our model carry at most 5% of
the convection, e.g., for the strongly nonlinear state at
r = 3.5. Of course, their relative contribution increases
with r. At r = 2, slightly above the saddle of the SOC
solution, our model reproduces the exact results for the
temperature field with the same accuracy as for the ve-
locity field. Here, increasing the Rayleigh number leads
to a building up of a plateau in the first mode. This
structure cannot be reproduced by our model since it
takes only a cos 7z into account. On the other hand, the
model approximates the zeroth lateral mode in a nearly
perfect manner. Higher modes in the temperature field
contribute with about 10%. The largest errors occur in
the concentration field. While they are still acceptable
at » = 2 there are structural differences to be seen in
the strongly nonlinear state at » = 3.5. There the ex-
act profile shows a local maximum structure caused by
the combination of the terms 1, cos 7z, and cos 2wz. The
latter one is absent in our approximation. In contrast
to this first lateral mode our model reproduces the ze-
roth lateral mode of the concentration with the accuracy
obtained for the velocity and temperature field: Apart
from quantitative errors (of about 15% for r = 3.5) the
model also reproduces the inversion of the central con-
centration gradient as the numerics do. For nonlinear
stationary convection in 3 < 0 mixtures we can there-
fore state that the stable layering of the concentration in
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FIG. 9. Vertical profiles of the lateral Fourier modes n = 0
(circles and full lines ), » = 1 (squares and dashed lines),
and n = 2 (triangles) for stationary convection. Symbols re-
fer to finite-difference numerical simulations of the full field
equations and lines represent our model. In the last two rows
86C denotes the deviation of the concentration from the global
mean and the dotted line is the conductive profile of §C. Nu-
merical profiles of, e.g., the n = 3 concentration mode con-
tributing with about 20% of the first mode are not presented
for the sake of clarity. Parameters are ¥ = —0.25, Q = 0,
L=oc=k=1.

the purely heat conducting state is inverted in nonlinear
states. This leads to a strong mixing of the fluid in the
bulk near z = 0. The profiles of our model show similar
qualities and defects for positive 1. There the nonlin-
ear states invert the unstable layering of the conductive
state into a stable layering. We finally stress that, e.g.,
the third lateral concentration mode that is not shown in
Fig. 9 for the sake of clarity contributes with 20% relative
to the first mode.

Altogether the model predicts the vertical profiles of
the first lateral modes reasonably well near the saddle of
the SOC’s. There, even the concentration field is approx-
imated in an acceptable manner. In strongly nonlinear
states we can approximate the vertical velocity field and
that of the temperature with a satisfying quality.

VI. SUMMARY

We have investigated the influence of the Dufour cou-
pling, i.e., the effect that concentration gradients drive
heat currents or change the temperature field on con-
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vection in binary fluid layers heated from below. The
Dufour effect changes the temperature field equation “di-
agonally” via the term LQ2V2T, which enhances heat
diffusion, and “off-diagnonally” via the term —LQyV2C,
which reflects concentration-induced teniperature varia-
tions. Thus the largest effects are seen for large L and
large | ¥ |. We focused our main interest on gas mix-
tures with Lewis and Prandtl numbers around one. For
Dufour numbers 0 < @ S 40, i.e., in a range that seems
to contain physically realistic gas parameters, we have
determined the influence of the Dufour effect, both on
the linear stability behavior of the quiescent conductive
state and on various nonlinear convection properties in a
range of experimentally relevant Soret couplings 3. To
that end we have used an eight-mode Galerkin approxi-
mation that describes convection in the form of straight
parallel rolls subject to realistic vertical boundary condi-
tions. Its nonlinear properties were compared with some
selected numerical simulations of the full hydrodynamic
field equations and the linear ones were compared with
numerically or analytically exact stability analyses.

A. Linear properties

The influence of the Dufour effect on the stability of
the conductive state can be summarized — see also [14]
— as follows. (1) It destabilizes (stabilizes) the con-
ductive state against the growth of stationary (oscilla-
tory) convection. (2) The critical curves r¢&,,(¥) and
1S (¥) are shifted with increasing @ towards more neg-
ative 9. (3) The % range with stationary (oscillatory)
instabilities grows (shrinks) with Q. (4) The Hopf fre-
quency decreases with growing Q. These properties are
well reproduced by our few-mode model. In agreement
with [15] we found that the critical stationary wave num-
ber kS, (p) in the exact stability analysis is governed by
only a single parameter p that also determines the shape
of the stationary marginal stability curve %Rstab(k;p).
Thus, L, Q, and % enter only via the scaling combina-
tions p = ZTW;W and S = (1+Qv?)(1+v)+%/L.
The exact value for which a stationary zero wave num-
ber instability occurs is found to be py = 33341 and an
expansion around this point is presented.

B. Nonlinear properties

To determine the influence of the Dufour effect on non-
linear convective properties we investigated in particular
the bifurcation behavior of the flow intensity, of the con-
vective heat current NV — 1, and of the convective mixing
of the concentration field M as functions of r for several
Q.

Traveling-wave convection. (1) The 1 range in which
TW solutions — stable or unstable — are present is
shifted to more negative values when the Dufour cou-
pling increases. (2) Forwards bifurcating TW’s disappear
already for smaller Q@ while backwards bifurcating ones
still exist for larger @ when % is sufficiently negative.

(3) However, for L = o = 1 these subcritically bifurcated
TW solution branches do not develop a saddle before
they merge with zero frequency with the SOC solution
branch. Thus, stable TW states on an upper TW solution
branch beyond a saddle that can be seen in liquid mix-
tures for L = O(10~2%) and 0 = O(10) were not found,
either in the model or in the numerical simulations of the
full field OBE’s. The reason for their absence is the large
Lewis number L = O(1) of gas mixtures.

Stationary convection. (1) The Dufour-induced desta-
bilization of the conductive state against stationary per-
turbations shifts the onset of SOC to lower values of r.
(2) The range of subcritical SOC bifurcations in the L-
1 parameter plane shrinks upon increasing Q. (3) With
growing Dufour coupling there is a gradual change from
a strongly backwards SOC bifurcation — e.g., at large
negative 9 — via a tricritical one to a forwards one and
the initial slope of a supercritical bifurcation curve de-
creases. (4) In addition, the Dufour effect reduces the
convective intensity and with it the mixing of the con-
centration field at larger r so that the bifurcation curves
of N -1, w?, , and M as functions of r become flat-
ter. (5) Furthermore, structural changes in the convec-
tive fields resulting from either increasing @ or decreasing
r are the same. (6) Comparison with numerical simula-
tions of the full OBE’s shows that the Galerkin approx-
imation provides good results for stationary convection
in gas mixtures also for SOC states that are well above
onset not only for the Nusselt number but also for the
convective mixing M. The reason is that the field ex-
pansion in trigonometric functions is quite effective since
with L = O(1) the problem of concentration boundary
layers is less severe than in liquids.
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APPENDIX: FSI STABILITY ANALYSIS

Here we consider a FSI-mode truncation to study the
influence of the Dufour effect on convection in binary gas
mixtures with an idealized free-slip boundary condition
for the velocity field but with impermeable plates using
the ansatz

ug = [wlle_ik” + c.c.] V2cosmz, (Ala)
0= [0116““‘” + c.c.] V2cosmz

+002V/2sin 27z, (A1b)

(= [Cwe_“‘m +cc] + Co1V2sinmz. (Alc)

_Performing a stability analysis of the conductive state
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in the standard way we reproduce the stationary stabil-
ity threshold 7gat(k) and the critical wave number kS,
obtained by Hort et al. [14]. But for the oscillatory insta-
bility we obtain results that differ for finite Q from Egs.
(3.17)—(3.19) of Ref. [14]. We get

~6 =~
rose(k) = q 1+LC

R (1+9)1+0)- 2%
x |[(1+0) (1+§)—lp¥

with a critical lateral wave number determined by a third-
order polynomial in (kS,.)?2,

(Esec)® [(1 + L) (1+ g:) _ ¢7~ 1+L

(A2a)

+
) 2+c] 4

q

. 2 1
+ (k&.)* [3 +E o (1 + —)
o g

ey

~_a— + o

=0 (A2b)

and a Hopf frequency w H(l::) given by

2 T2 _ 8 (1+L)(o + L)
2 ™ a9+ -2

~(+P)EL-0)+ Y
+prp s

(1+9)(1+0) - %fr (A2)

There we used the following abbreviations:
R? 2—4:—7!'4, r= —R{%’ (A3a)
R L % (A3b)
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FIG. 10. Stability properties of a gas mixture (L = 1,
o = 1) vs separation ratio 1 for different Dufour numbers Q.
The stationary (solid line) and oscillatory (dashed line) stabil-
ity thresholds rg.,, and 75, the corresponding reduced wave
numbers k., and I}g,c, and the critical Hopf frequency wy
are determined approximately for FSI boundaries for which
R? = Z'n* and k? = m/v/2. This figure is meant as a corri-
gendum of Fig. 2 of [14].

02 3 o5 . q 1
=7 =75, T= +—, A3c
= T E T @y (A3)
~ 8
L=L1+Qy?), ¥=—5LQ, (A3d)
~ k2 ~ k2 .

In Fig. 10 we present our FSI results which show in con-
trast to Fig. 2 of [14] the characteristic Dufour-induced
shrinking of the 9 region with an oscillatory instability
of the conductive state.

[1] J. K. Platten and J. C. Legros, Convection in Liquids
(Springer-Verlag, Berlin, 1984).

[2] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993).

[3] K. E. Anderson and R. P. Behringer, Physica D 51, 444
(1991).

[4] G. W. Baxter, K. D. Eaton, and C. M. Surko, Phys.
Rev. A 46, 1735 (1992).

[5] P. Bigazzi, S. Ciliberto, and V. Croquette, J. Phys.
(Paris) 51, 611 (1990).

[6] E. Kaplan and V. Steinberg, Phys. Rev. Lett. 71, 3291
(1993).

[7] P. Kolodner, Phys. Rev. E 50, 2731 (1994).

[8] K. Lerman, E. Bodenschatz, D. S. Cannell, and

G. Ahlers, Phys. Rev. Lett. 70, 3572 (1993).

[9] O. Lhost and J. K. Platten Phys. Rev. A 44, 3765 (1991).

[10] G. Zimmermann, U. Miiller, and S. H. Davis, J. Fluid
Mech. 238, 657 (1992); 254, 720 (1993).

[11] G. Ablers and I. Rehberg, Phys. Rev. Lett. 56, 1373
(1986).

[12] T. J. Bloodworth, M. R. Ardon, J. K. Bhattacharjee,
P. G. J. Lucas, and N. D. Stein, Nonlinearity 3, 981
(1990).

[13] H. Gao and R. P. Behringer, Phys. Rev. A 34, 697 (1986).

[14] W. Hort, S. J. Linz, and M. Liicke, Phys. Rev. A 45,
3737 (1992).

[15] G. W. T. Lee, P. Lucas, and A. Tyler, J. Fluid Mech. 135,
235 (1983).



52 INFLUENCE OF THE DUFOUR EFFECT ON CONVECTION IN . .. 657

[16] W. Barten, M. Liicke, and M. Kamps, Phys. Rev. E 51,
5636 (1995).

[17] S. J. Linz, Phys. Rev. E 49, 5881 (1994).

[18] S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability (Dover, New York, 1981).

[19] D. Gutkowicz-Krusin, M. A. Collins, and I. Ross, Phys.
Fluids 22, 1443 (1979); 22, 1451 (1979).

[20] E. Knobloch and D. R. Moore, Phys. Rev. A 37, 860
(1988).

[21] S.J. Linz and M. Liicke, Phys. Rev. A 35, 3997 (1987); in
Propagation in Systems Far from Egquilibrium, Springer
Series in Synergetics Vol. 41 (Springer, Berlin, 1988), p.

292.

[22] O. Lhost, S. J. Linz, and H. W. Miiller, J. Phys. (Paris)
II 1, 279 (1991).

[23] M. C. Cross and K. Kim, Phys. Rev. A 37, 3909 (1988);
38, 529 (1988).

[24] M. Liicke, W. Barten, and M. Kamps, Physica D 61, 183
(1992).

[25] J. Niederlander, M. Liicke, and M. Kamps, Z. Phys. B
82, 135 (1991).

[26] G. Ahlers and M. Liicke, Phys. Rev. A 35, 470 (1987).

[27] S. J. Linz, M. Liicke, H. W. Miiller, and J. Niederlander,
Phys. Rev. A 38, 5727 (1988).



Temperature

Latt profiles

Streamlines

Concentration

FIG. 5. Structural properties of SOC states in the z-z plane
perpendicular to the roll axes. Black implies low field val-
ues and white implies high ones. The second row shows the
lateral profiles of w (solid line), 208 (dashed line), and 100¢
(dot-dashed line) at midheight of the fluid layer. Increasing Q
or decreasing r leads to structurally similar fields — increas-
ing both appropriately does not cause changes. Parameters
are ¢y = —0.25, L = 1, and k = 1.
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FIG. 7. Existence boundaries of TW solutions (stable or
unstable) of the model for ¢ = 1, k = k2. TW'’s exist below
the thick labeled curves. For k = ki,. the existence range
is larger as can be inferred from Fig. 2. The shaded (white)

regions show the range of supercritically (subcritically) bifur-
cating TW's,



